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Motivation

- APS: $467M to build; tens of millions to operate.
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Mira: $180M to build; $4M to operate; 3.9 Megawatts .
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Optimizing simulations

minimize f(x)
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V£(x) is not available

» These types of problems are called “black-box” optimization
problems or derivative-free optimization problems.
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Optimizing simulations

minimize f(x)
x€ER"

subject to: x € D = {x: —oco </ < x < u < oo}

V£(x) is not available

v

These types of problems are called “black-box” optimization
problems or derivative-free optimization problems.

» Derivatives are traditionally very important in optimization

> How do you find minima/maxima in calculus?
> What information is contained in the gradient?

» As computers become more powerful, more simulations appear

v

Disclaimer: If the problem has derivatives please use them!



Optimizing simulations

Derivative-free optimization problems show up throughout the world

» Engine design
» Physical experiments
» Tribology

> Satellite planning

6 9 of 38



Satellite Collision Avoidance

Courtesy NASA/JPL-Caltech



Satellite Collision Avoidance

» Problem setup

> Receive a warning from an international monitoring agency
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Satellite Collision Avoidance

» Problem setup

» Receive a warning from an international monitoring agency

» The probability of collision is 1071% ~ 0.02.

» Can control the duration and time of your rocket burn
> Only burn in the direction of motion

> You can run a simulation at any duration and time

v

Each simulation takes ~ 20 seconds and we have 2.5 days
» Want a probability of collision under 1 in a billion (107°)

» Use the least amount of fuel as possible

» What would you do?



Try it yourself

MATLAB
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Try it yourself

MATLAB

Process should hopefully be described to a computer.
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Common first thoughts

» Random Guessing

> Not very elegant
» Evaluate points close to previous points

> Needs some sort of finishing step
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Common first thoughts

» Random Guessing

> Not very elegant
» Evaluate points close to previous points

> Needs some sort of finishing step

» Finite-differences can be problematic

» n+ 1 or 2n+ 1 evaluations at every point

> Simulations are often noisy
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Grid Search
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Model-based methods - Interpolation
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Other options

» Build a model of the entire space (Kriging)
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Bee Colony Optimization

Particle Swarm

v

v

Cuckoo Search
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Other options

» Build a model of the entire space (Kriging)

» Evolutionary algorithms
> Simulated Annealing

> Ant Colony Optimization

> Bee Colony Optimization

> Particle Swarm

» Cuckoo Search

» Bacterial Colony Optimization
» Grey Wolf Optimization

» Firefly Optimization

» Harmony Search

» River Formation Dynamics
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Problem Modifications

The Problem:
imize £
minimize (%)
subject to: x € D = {x: —oco < [ < x < u < o0}

Vf(x) is not available
s(x) <0 (but s(x) > 0 is less desirable)
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Problem Modifications
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Problem Modifications

The Problem:
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Problem Formulation

» We want to identify distinct local minimizers of the problem

minimize f(x)
I<x<u
x €R"

» The simulation f is already using parallel resources, but it does not
scale to the entire machine.

» We do not expect hundreds of meaningful local minima.

22 of 38



Motivation

- APS: $467M to build; tens of millions to operate.



Multi-Level Single Linkage

A multistart method with some local optimization routine L:

Algorithm 1: MLSL

for k=1,2,... do
Evaluate f at N random points drawn uniformly from D.
Start £ at any previously evaluated point x:

» that is not a local minima
» Bx :|lx — x| < re and f(x;) < f(x)

end




Multi-Level Single Linkage

If the simulation f, and local optimization method £, and r, satisfy
some assumptions, then MLSL has nice theoretical properties.

> f

» Twice continuously differentiable
> All local minima are interior points
> Some positive distance between all minima
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Multi-Level Single Linkage

If the simulation f, and local optimization method £, and r, satisfy
some assumptions, then MLSL has nice theoretical properties.

> f
» Twice continuously differentiable
» All local minima are interior points
» Some positive distance between all minima
> L
» Strictly descent
» Converges to nearby minimum (not stationary point)
>
olog kN
r 1 + vol (D 1
=il ( (D) T ®



Multi-Level Single Linkage

Theorem 8!

If ry is defined by (1) and o > 2, then the probability that £ is started at
iteration k tends to O with increasing k.

If o > 4, then, even if the sampling continues forever, the total number
of local searches ever started is finite with probability 1.

Theorem 121

If r, — 0, all local minima will be found.

1A H. G. Rinnooy Kan and G. T. Timmer. “Stochastic Global Optimization Methods Part II:
.Multi Level Methods.” Mathematical Programming, 39(1):57-78, Sept. 1987.
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 3; r; = 0.53603;
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 22; r;, = 0.26079;
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Multi-Level Single Linkage

k = 27; r;, = 0.24048;
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Derivative-free MLSL

» If we had the ability to concurrently evaluate points, what might be
the best course?

> Is it better to do finite-difference computations or separate local
optimization runs?

a 29 of 38



Our Method
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Our Method
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k = 4; r, = 0.52516;
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method

k = 12; r, = 0.42988;
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method

k = 32; r, = 0.30425;
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method
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Our Method

k =38 r, = 0.27288;

30 of 38



Our Method

k = 39; r, = 0.26968;
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Our Method
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Our Method
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Our Method

k = 42; 1, = 0.26079;

30 of 38



Our Method
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Our Method

k = 45; r), = 0.25538;

30 of 38



Our Method
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Our Method

k = 47; r, = 0.25198;
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Our Method

k = 48; r, = 0.25034;
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Our Method

i = 0.24873;

k = 49;
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Our Method

k = 50; rj, = 0.24716;
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Measuring Performance

ORBIT started from

i
points in a 10x10 grid
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Measuring Performance

Algorithms compared
> Ours (4 parallel workers)
> Direct (serial)
» pVTDirect (4 parallel workers)

» Since Ours involves a random sampling stream, each problem was
duplicated 10 times.

» Each method evaluates the centroid first.
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Measuring Performance

How would you measure how “efficiently” an algorithm finds multiple
local minima?
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Measuring Performance

Define

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.
Let X(*,.) be the element of X* corresponding to the value f(’f)
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Measuring Performance

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.

Let x(*,.) be the element of X* corresponding to the value f(’f)

A method has found the global minimum within a level 7 > 0 at batch
iteration k if it has found a point X satisfying:

F(2) — 1y < (1=7) (FOo) = 7).

where Xxj is the starting point for the problem.
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Measuring Performance

Define

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.
Let X(*,.) be the element of X* corresponding to the value f(’f)

A method has found the j best local minima within a level 7 > 0 at
batch iteration k if:

Hx(*l), o ,XE})} ﬂ {X(*,-)|EI>“< s.t. H)“(—x(,-)H < TH >J

where J is the largest integer such that f(;'-f) = f(j.).
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Measuring Performance: 7 = 107!

Global minimum

—&—Ours (p=4) H
—O— Direct (p=1)
— A - pVTDirect (p = 4)
T T

20 25 30 35 40
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.
Measuring Performance: 7 = 107!

Best three minima

—&—Ours (p=4) H
—O— Direct (p=1)
— & - pVTDirect (p = 4)
T

10 15 20 25
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Measuring Performance: 7 = 1073

Global minimum

—&—Ours (p=4)
—O— Direct (p=1)

— & - pVTDirect (p = 4)
T T

15 20 25 30
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.\ _________________________________________
Measuring Performance: 7 = 1073

Best three minima

T T
09r- 7
0.8 q
0.7 =
gcal
0.6 7
05 7
04r q
0.3r- q
=~ === =8 ———
—&—Ours (p=4) H
—O— Direct (p=1)
— & - pVTDirect (p = 4)
T T

14 16
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Conclusions and Future Work

Take Away:

» Derivative-free optimization is an active and applicable area of
mathematics

» Local models efficiently use previous function evaluations

» Concurrent function evaluations can be used to help an algorithm
find multiple local optima
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Conclusions and Future Work

Take Away:

» Derivative-free optimization is an active and applicable area of
mathematics

» Local models efficiently use previous function evaluations

» Concurrent function evaluations can be used to help an algorithm
find multiple local optima

Working on:
» Industrial implementation of Our algorithm
» Accelerator design problems

» Developing rules for pausing local optimization runs



For students:

Computational math includes
» Applications
» Computer Programming

» Theory
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For students:
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DFO is broad
» Geometry of evaluated points

» Analysis
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For students:

Computational math includes
» Applications
» Computer Programming

» Theory

DFO is broad
» Geometry of evaluated points

» Analysis
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Stochastic/probabilistic functions

v

Stochastic/probabilistic models

v

Removing old points?

Questions?



Other interests

> Sport Scheduling (Elitserien)

» Heavy-duty Vehicle Platooning

» Mathematics Outreach
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